Problem 3.24

Show that if an operator \hat{Q} is hermitian, then its matrix elements in any orthonormal basis satisfy $Q_{m n}=Q_{n m}^{*}$. That is, the corresponding matrix is equal to its transpose conjugate.

Solution

Suppose there's an operator \hat{Q} and an orthonormal basis $\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle$. To find the matrix Q representing this operator with respect to this basis, operate on each of the basis vectors with \hat{Q}.

$$
\begin{aligned}
\hat{Q}\left|e_{1}\right\rangle & =Q_{11}\left|e_{1}\right\rangle+Q_{21}\left|e_{2}\right\rangle+\cdots+Q_{n 1}\left|e_{n}\right\rangle \\
\hat{Q}\left|e_{2}\right\rangle & =Q_{12}\left|e_{1}\right\rangle+Q_{22}\left|e_{2}\right\rangle+\cdots+Q_{n 2}\left|e_{n}\right\rangle \\
& \vdots \\
\hat{Q}\left|e_{n}\right\rangle & =Q_{1 n}\left|e_{1}\right\rangle+Q_{2 n}\left|e_{2}\right\rangle+\cdots+Q_{n n}\left|e_{n}\right\rangle
\end{aligned}
$$

These equations can be expressed compactly with the general formula,

$$
\hat{Q}\left|e_{j}\right\rangle=\sum_{k=1}^{n} Q_{k j}\left|e_{k}\right\rangle, \quad 1 \leq j \leq n .
$$

The aim is to solve for the matrix elements $Q_{k j} .\left|e_{j}\right\rangle$ is a ket, and $\hat{Q}\left|e_{j}\right\rangle$ is another ket. Take the inner product of both sides, then, with the bra $\left\langle e_{i}\right|$, where $1 \leq i \leq n$.

$$
\begin{aligned}
\left\langle e_{i}\right| \cdot \hat{Q}\left|e_{j}\right\rangle & =\left\langle e_{i}\right| \cdot \sum_{k=1}^{n} Q_{k j}\left|e_{k}\right\rangle \\
& =\sum_{k=1}^{n} Q_{k j}\left\langle e_{i} \mid e_{k}\right\rangle \\
& =\sum_{k=1}^{n} Q_{k j} \delta_{i k} \\
& =Q_{i j}
\end{aligned}
$$

Take the complex conjugate of both sides.

$$
\left(\left\langle e_{i}\right| \cdot \hat{Q}\left|e_{j}\right\rangle\right)^{*}=Q_{i j}^{*}
$$

Use the fact that $\langle\alpha \mid \beta\rangle^{*}=\langle\beta \mid \alpha\rangle$.

$$
\left\langle e_{j}\right| \hat{Q}^{\dagger} \cdot\left|e_{i}\right\rangle=Q_{i j}^{*}
$$

If \hat{Q} is hermitian $\left(\hat{Q}^{\dagger}=\hat{Q}\right)$, then

$$
\begin{gathered}
\left\langle e_{j}\right| \hat{Q} \cdot\left|e_{i}\right\rangle=Q_{i j}^{*} \\
Q_{j i}=Q_{i j}^{*} .
\end{gathered}
$$

